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CAN A DECAY PROCESS EXPLAIN THE TIMING OF
CONDITIONED RESPONSES?

C. R. GALLISTEL

UNIVERSITY OF CALIFORNIA, LOS ANGELES

To explain time-scale invariant distributions of response latencies, it appears to be necessary to
postulate scalar noise in the remembered intervals, against which the subjective measure of the
currently elapsing interval is compared. At least in some cases, the observed variability cannot be
due to variability in the subjective intervals written to memory; it must come from noise (variability)
in the reading of a memory. The Staddon and Higa proposal offers no explanation for the observed
variability, and it is unclear what noise assumption would yield the observed variability, given their
assumption that intervals are timed by a nonlinear decay process. The decay process cannot plausibly
be represented by the logarithmic function, because it begins and ends at infinity. The assumption
of any form of nonlinear timing is inconsistent with the most important result of the time-left ex-
periment, which is that the changeover time increases linearly with the comparison-standard differ-
ence.
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The data that Gibbon’s scalar expectancy
theory (SET) tries to explain are primarily
data on the latencies of conditioned respons-
es. Conditioned responding tends to begin
when a certain proportion of the reinforce-
ment latency has elapsed. My comments fo-
cus on the assumptions crucial to the expla-
nation of these response latencies.

The Origins of the Noise in
Temporal Decision Making

The opening and closing parts of Staddon
and Higa’s article seem to imply that the prin-
cipal problem with Gibbon’s SET is that it
does not enable us to derive the variability
observed in the latencies of conditioned be-
havior. To explain these response latencies,
SET assumes a timer, a memory that stores
outputs from the timer, and a comparison
process. The comparison process generates a
response when the ratio of the current value
from the timer to the comparison value re-
trieved from memory exceeds a threshold. To
model the timer, Gibbon suggested a Poisson
pacemaker feeding an accumulator. The es-
sential feature of this timer is that subjective
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time (the internal measure of the duration of
an interval) is proportional to objective time.

Staddon and Higa suggest that the theoreti-
cally relevant property of this model for the
timer is what it predicts about the variability in
the repeated timing of the same interval. They
note that the variance in subjective time for a
given duration of the interval being timed will
be equal to the mean value of the obtained
accumulations. If the variance is proportional
to the mean, then the standard deviation is pro-
portional to the square root of the mean. Thus,
the greater the mean, the smaller the standard
deviation in proportion to the mean. In his
original formulaton of SET, Gibbon (1977)
made this same point, and he drew the neces-
sary conclusion, namely, that Poisson variability
in accumulations (subjective intervals) could
not explain the scalar variability in the response
latencies. That is, it could not explain why the
standard deviations of the obtained distribu-
tions are proportional to the means (and, more
generally, why normalized distributions, regard-
less of their shape, are superimposable). It is
unclear why this issue is revisited at this late
date; it has been a settled issue from the begin-
ning.

Gibbon (1977) suggested reasons why pro-
portional variability might occur, focusing on
possible trial-to-trial variations in the rate at
which the pacemaker ran. Subsequent work,
however, has shown that the scalar variability in
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the response distributions cannot be due pri-
marily to variability in the original timing of the
remembered intervals. Rather, it must be due
to variability in the process of reading a value
stored in memory in order to use it as the com-
parison value in a decision. The necessity of
attributing the variability in response latencies
primarily to the memory reading process is
shown most clearly by the results obtained from
the two-standard version of the time-left task,
because in this experiment, the central tenden-
cy or expectation read from memory has no
counterpart in the input intervals. None of the
input intervals is anywhere near the expecta-
tion of the distribution of those intervals. Thus,
the scalar variability must arise from the process
of reading the expectation itself, not from the
distribution of intervals on which that expec-
tation is based.

In the time-left task, the subject compares
the time left until reward on one side (the so-
called comparison or time-left side) against
the unvarying expectation on the so-called
standard side. The delay on the time-left side
gets shorter as the trial proceeds, while the
delay on the standard side does not. When
the subject estimates that the time left on the
comparison side is shorter than the delay on
the standard side, it switches from the stan-
dard side to the comparison side. In the two-
standard version of this task, the expectation
on the standard side comes from an experi-
enced population of two randomly inter-
mixed standard delays: On some trials, the
standard delay is very short, for example, 15
s; on others, it is very long, for example, 240
s. The subject never knows which delay is in
force on the standard side on any trial, so it
must base its behavior on the expectation it
computes from the bimodal population of
two very different delays. The time left at
which the subject changes over tells us what
the subject takes to be the expectation or cen-
tral tendency in this bimodal distribution of
delays on the standard side. The changeover
turns out to occur at about the harmonic
mean (e.g., Brunner, Gibbon, & Fairhurst,
1994), which, for the above illustrative values
of the two standard intervals, is 30 s.

The crucial result for present purposes is
that the distribution of changeover responses
(the distribution of elapsed times at which the
subject switches from the standard side to the
comparison side) is essentially the same in the
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two-standard case as it is in the case in which
there is but a single standard interval at 30 s.
Thus, the distribution of changeover responses
cannot be a reflection of variability in the tim-
ing of the very short and very long intervals
that compose the population of standard inter-
vals. The population in the two-standard ver-
sion is very different from the population in
the one-standard version. Only the expecta-
tions are the same in these two cases, not the
populations on which those expectations are
based. Yet, these expectations produce the
same distribution of changeover latencies. One
is forced to conclude that the proportional
standard deviation (the scalar variability) ob-
served in the distribution of response latencies
reflects trial-to-trial variability in the target val-
ues retrieved from memory rather than trial-to-
trial variability in the original inputs to memory
(the “accumulations” in the accumulator).

Put another way, one is forced to conclude
that time-scale invariance is a basic property of
the noise in a remembered temporal interval,
no matter how that interval was originally de-
rived, whether directly from the timer or from
a computation of the expectation of a distri-
bution. Time-scale invariance means that one
cannot deduce the time scale of the experi-
ment from the distribution of response laten-
cies. That is, from looking at this distribution,
one cannot estimate what the objective dura-
tion of the interval to be remembered was. If
the variability in the observed distribution were
not proportional to its mean, then one would
be able to deduce the time scale of the exper-
iment (the reinforcement latency) in the ab-
sence of a scale factor for the x axis (numeri-
cally labeled ticks). The proportion between
the width of the distribution and its location
along the x axis would indicate the time scale
of the experiment (the reinforcement latency).
In short, the assumption of Gaussian noise in
the signal that comes from memory, with a
standard deviation proportional to its mean val-
ue, is indeed a postulate in SET, not a deduc-
tion. It is best seen, however, as a manifestation
of a more general property of conditioned be-
havior, namely, time-scale invariance.

The postulation of scale-invariant noise in
the values read from memory is a “deeper
problem” with SET (Staddon and Higa, p.
227) only if there are other assumptions
about the sources of variability, from which
the variability in response latencies may be
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deduced. No such assumptions are presented
in this paper. In fact, Staddon and Higa re-
fuse to say anything about the characteristics
of the noise in the signals that determine be-
havior in their model. A problem I have with
any proposal that the subjective measure of
time is given by a decay function is that this
makes it difficult to obtain a time-scale in-
variant model. The assumed rate of decay im-
poses a time scale, making it difficult to have
a time-scale invariant model.

One could explain the scalar variability of
response latencies if one postulated (a) that
subjective time is a logarithmic function of
objective time and (b) that the variability or
noise in the subjective time signal is indepen-
dent of the magnitude of that signal (i.e.,
constant, rather than varying as a function of
signal strength). However, as explained be-
low, the postulation of a logarithmic relation
is incompatible with the assumption that time
is measured by a decay process, which ap-
pears to be the foundational assumption in
the Staddon and Higa model. Second, the as-
sumption that the noise in the signal is in-
dependent of signal level is physically implau-
sible. Finally, this physically implausible
postulate is just as much a postulate as the
postulation of scalar variability in SET. Thus,
the Staddon and Higa model does not derive
the observed scalar variability from more ba-
sic assumptions. Indeed, it does not even pro-
vide an explanation of the observed scalar
variability.

The Function Relating Subjective
Intervals to Objective Intervals

The essential feature of the accumulator
model of the timer is that the subjective in-
terval (the quantity in the accumulator at the
end of an objective interval) is proportional
to the objective interval. SET would not be in
any consequential way altered if the Poisson
pacemaker assumption were abandoned,
leaving only the foundational assumption
that subjective intervals are proportional to
objective intervals. Empirically, this function
appears to be a linear function rather than a
strictly proportional one, but the deviation of
the intercept from the origin is small, so, for
most purposes, the function can be treated as
one of simple proportionality, which is what
I will assume hereafter.

Staddon and Higa suggest an alternative to
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this assumption. Actually, they suggest at least
two alternatives, possibly three. One alterna-
tive is that the subjective interval decreases in
accord with the sum of several exponentially
decaying terms (their multiple-time-scale
function).! This seems to be the assumption
that they are in the end most deeply com-
mitted to. The other alternative, which they
suggest is equivalent to the first for practical
purposes, is that the subjective quantity (the
quantity in the head) that corresponds to an
objective interval decreases as the negative
logarithm of the objective interval. A third
suggestion, entertained at various points in
their argument, is that the relation is a power
function with a negative exponent. I do not
agree that these alternatives are for practical
purposes equivalent. This makes it hard to as-
sess the viability of Staddon and Higa’s pro-
posal, because they sometimes rest their ar-
gument on properties of the logarithmic
function, while at other times they assume
that the sum-of-exponentials function best de-
scribes the relation. These are mutually in-
compatible assumptions. The claim (on p. 220)
that “There are several other functions that
have very similar properties to the logarithmic:
power .. ., the sum of exponentials, and others
... (Figure 1)” is not defensible, either on the
grounds by which the properties of functions
are usually compared or on the grounds that
the differences between the functions are not
great enough within a reasonable range of in-
tervals to matter in practice.

One important property of a function is its
behavior at the extremes of its argument. The
negative logarithmic function of time [T =
—log(#)] goes to plus infinity as time goes to
zero. This property, all by itself, is an obstacle
to the assumption that this function could de-
scribe the quantitative relation between ob-
jective time intervals and the signals (or trac-
es) in the head that they give rise to.
Moreover, as time goes to infinity, the nega-

! It may seem odd to speak of a decreasing measure of
an increasing function, but that is inescapable in a model
that uses the state of decay to measure the magnitude of
an increasing variable (as in, e.g., carbon 14 dating). As
Staddon and Higa note, this inverse measure (a measure
that gets smaller as the thing being measured gets big-
ger) is more or less okay, as long as the relation between
the quantity measured and the measure is monotonic.
However, one consequence of using a decay measure is
that the measure must be nonlinearly related to the thing
measured. This leads to problems, as explained below.
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tive log function goes to minus infinity. This
is a decidedly odd property for a “decay” pro-
cess to have. Usually, the more something has
decayed, the closer its absolute value is to
zero. For time intervals greater than one, the
more the negative logarithm “decays,” the
farther its absolute value gets from zero.

The power function also goes to plus infin-
ity as time goes to zero (again an obstacle to
postulating it), but at least it goes to zero as
time goes to infinity, as a decay function
should. This means, however, that as time in-
tervals get larger, the difference between any
logarithmic function of time and any power
function of time becomes arbitrarily large.
Thus, these two functions are not inter-
changeable over any very large range of in-
tervals. (Remember that a straight line is a
good approximation to any smooth function
over a short enough interval.)

Finally, Staddon and Higa’s MTS func-
tion—a sum of decaying exponentials—dif-
fers by arbitrarily large amounts from the
negative log function at both ends. Any sum
of exponentials is finite at both extremes of
its argument, whereas the logarithmic func-
tion is infinite at both extremes.

Another very important property of the
proposed functions in the present context is
how they relate objective differences and ra-
tios to subjective differences and ratios. SET
proposes that subjective time is proportional
to objective time. More formally, it is a scalar
function of objective time, that is, T = ki,
where T represents the subjective duration of
an interval, ¢ is its objective duration, and k
is a constant of proportionality (scaling fac-
tor). This relation has the unique and theo-
retically very important property that equal
objective differences map to equal subjective
differences and equal objective ratios map to
equal subjective ratios. This means, for ex-
ample, that the difference between the sub-
jective durations corresponding to objective
durations of 10 and 20 s is the same as the
difference between the subjective durations
corresponding to objective durations of 40
and 50 s. Thus, equal differences in the world
map to equal differences in the head. And
similarly, the ratio between the subjective du-
rations corresponding to objective durations
of 1 and 10 s is the same as the ratio between
subjective durations corresponding to objec-
tive durations of 5 and 50 s. Thus, equal ratios
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in the world map to equal ratios in the head.
(Formally, this is because, if t§{ — & = t; — 1,
then k¢, — kt, = kty — ki, and if ¢/t = /1,
then kt,/kt, = kty/kt,, where {; # {, and ¢, #
i5.) All of the other proposed functions (map-
pings from the world to the head) lack one
or both of these two important properties.

The power function does not carry equal
objective differences into equal subjective dif-
ferences. Assuming again that { # & and ¢
#t: Ity — &, =15 — 1, then ¢/ — 1) # 1} —
. For example, 12 — 22 5 22 — 32 However,
the power function does carry equal objective
ratios into equal subjective ratios: If ¢/t =
L/, then ¢!/t) = /1. For numerical illus-
tration, note that 12/22 = 22/42 Neither of
the other two functions has this property.

The log function does not carry equal ob-
jective differences into equal subjective dif-
ferences or equal objective ratios into equal
subjective ratios; rather, it carries equal objec-
tive ratios into equal subjective differences (a
property that Staddon and Higa make exten-
sive use of). Thus, under the same conditions
on the s as above, if t;, — & = & — ¢, then
log(#) — log(t) # log(t) — log(t,), and if
0/t = t,/t,, then log(t)/log(t) # log(t)/
log(t,). However, when (/4 = /4, then
log(¢) — log(L) = log(L) — log(ty). For nu-
merical illustration, note that log(1) — log(0)
= 0 + « # log(2) — log(l) = 0.3, and
log(2)/log(1) = 0.3/0 = » # log(4)/log(2)
= 0.6/0.3 = 2. However, log(2) — log(l) =
0.3 — 0 = log(4) — log(2) = 0.6 — 0.3.

The exponential function has the inverse
property; it carries equal objective differences
into equal subjective ratios. Under the same
conditions on the #s as above, if ¢{; — &, = {4
— 1, then bt — pot2 5 pots — peta and if 1/ 12
= /1%, then b*/b~=2 # b~/ b, However, if
= 2= — t* then b*1/b*2 = pis/ b, For
numerical illustration, note that 22 — 21 # 23
— 22 and 22/2! = 2 # 24/92 = 4, However,
22/21 = 23/22 = 2,

A sum of exponentials is not itself an ex-
ponential function, so the MTS function sug-
gested by Staddon and Higa does not possess
any of these potentially useful properties. The
function that Staddon and Higa graph as the
MTS function in their Figure 1 was obtained
by a simulation in which the weighting of the
different exponential terms was free to vary.
The actual weighting that produced the
graph is apparently not known. However, the
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following power, logarithmic, and sum-of-ex-
ponentials functions produce curves as close
or closer to each other than those in their
Figure 1. The power function is the one Stad-
don and Higa assumed. The exponentials
have the decay constants that they assumed.
The negative log function has been scaled
and displaced vertically so as to be as close to
these two functions as possible over the range
covered by Staddon and Higa’s Figure 1.
Thus, these functions allow us to estimate the
extent to which the MTS function has the
properties of the logarithmic function within
the range graphed by Staddon and Higa (the
situation is much worse outside this range):
power: T = (%45 negative log: T =
—0.39log(?) + 0.8; sum of exponentials: T =
MTS(8) = (1/2.5) (70360 + ¢=0-105¢ 4 () 5¢=0.0060)
From the third function, we can calculate that
MTS(1) — MTS(2) = 0.12 # MTS(3) —
MTS(4) = 0.07 and MTS(1)/MTS(10) =
2.47 # MTS(5) /MTS(50) = 3.302, and more-
over, MTS(1) /MTS(31) = 4.62 #* MTS(20)/
MTS(50) = 1.508 and MTS(1) — MTS(10) =
0.5 # MTS(5) — MTS(50) = 0.35. These nu-
merical examples show, when time is mea-
sured by a sum of decaying exponentials, that
equal objective differences do not corre-
spond to equal subjective differences, equal
objective ratios do not correspond to equal
subjective ratios, equal objective differences
do not map to equal subjective ratios, and,
finally, equal objective ratios do not map to
equal subjective differences (as they would if
the MTS function could be substituted for
the log function and vice versa).

The numerical examples given above limit
the values of ¢ to the range graphed by Stad-
don and Higa in their Figure 1, and yet the
discrepancies between the functions are sub-
stantial—great enough to yield measurably
different predictions even when the range of
tis thus limited. In fact, however, SET applies
to experiments covering a considerably
broader range—from a few seconds to 3,000
s (about three orders of magnitude). Over
this range, the differences between the func-
tions that Staddon and Higa suggest are
equivalent for practical purposes are very
large and completely unmistakable. For ex-
ample, when ¢ = 1,000, the MTS function in
Staddon and Higa’s Figure 1 is already effec-
tively zero, whereas the power function is 0.04
and declining very slowly, and the vertically
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displaced negative logarithmic function is
well below zero at —0.37 and growing ever
more negative (ever farther from the zero val-
ue at which a decay function ought to ter-
minate). Thus, before we can evaluate Stad-
don and Higa’s proposals, they will have to
settle on a form for the relation between sub-
jective intervals (the signals in the head) and
the objective intervals, because the predic-
tions of an MTS model cannot in fact be rea-
sonably approximated by the predictions of a
logarithmic model and vice versa.

The relation between differences and ra-
tios in the subjective realm and differences
and ratios in the corresponding objective
quantities is fundamental to the issues raised
by Staddon and Higa’s article. We are here
concerned with contrasting models for the
processes in the brain that “process,” “op-
erate on,” or “do computations with”” subjec-
tive intervals to produce behavior. The sub-
jective intervals are signals or traces in the
brain that are at least monotonically related
to objective intervals, and therefore can “en-
code” those intervals. Models for the pro-
cesses in the brain that determine the timing
of conditioned behavior are evaluated on the
basis of how well they predict the timing of
the animal’s responses given various objective
intervals (usually reinforcement latencies).
The predictions depend jointly on the pos-
tulated quantitative relation between the sub-
jective intervals and the objective intervals,
on the form and sources for the noise in
these neural signals, and on the formal prop-
erties of the operations or processes in the
brain into which these subjective intervals en-
ter in order to determine the observed be-
havior.

Many experimental results in the timing lit-
erature are very accurately accounted for by
a model that makes the defining assumptions
in SET, which are that (a) subjective intervals
are proportional to objective intervals; (b)
the noise in remembered intervals is Gauss-
ian with a standard deviation proportional to
the interval being remembered; and (c) the
decision variable—the quantity that generates
a response when it exceeds a decision thresh-
old—is a ratio of subjective intervals. Put an-
other way, this last assumption is that the
measure of the similarity of two intervals is
the ratio of their subjective measures. A ratio
of one indicates perfect similarity. Decisions
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to respond occur when this measure of simi-
larity exceeds a threshold, which is usually ap-
preciably less than one. Decisions to stop re-
sponding occur when this measure of
similarity is appreciably greater than one. The
success of SET at giving quantitatively accu-
rate explanations of the experimental data is
evidence for the correctness of its assump-
tions, including, of course, the assumption
that subjective intervals are proportional to
objective intervals. However, the experimen-
tal evidence most directly relevant to this par-
ticular assumption comes from the time-left
experiment, to which Staddon and Higa’s dis-
cussion does not do justice.

The fundamental idea behind the time-left
experiment is that if subjective intervals are
proportional to the logarithms of objective
intervals, then when the brain subtracts one
such quantity from another, it is equivalent to
dividing the corresponding objective inter-
vals. The subjective result of this operation
(the signal generated when the signal for the
elapsed interval is subtracted from the signal
for the comparison interval) corresponds to
the dimensionless quantity that is obtained by
dividing one objective interval by another,
that is, to the ratio of two objective intervals.
This follows directly from the property of the
logarithmic function stressed above, namely
that it carries equal objective ratios into equal
subjective differences. Thus, differences in
the head correspond to ratios in the world.

Because a logarithmic encoding of objec-
tive intervals converts subjective subtraction
(subtraction in the head) into objective divi-
sion, the assumption of such an encoding
makes startling predictions about what will
happen when a subject is faced with a task in
which it must compare a subjective interval
obtained by subtraction with another, sepa-
rately specified, subjective interval. This is
what the time-left task does. The subject must
compare the time left until reward is ob-
tained on the so-called comparison (C) side
with the standard (S) delay of reward on the
other side. The time-left to reward on the
comparison side gets shorter as the trial con-
tinues, whereas the standard delay does not.
Thus, there comes a point in the trial at
which the rational thing to do is to switch
responding from the standard side, which has
the shorter expected delay at trial onset, to
the comparison (time-left) side, which has
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the shorter expected delay after some inter-
val has elapsed. The only way to estimate this
point—the elapsed interval (F) at which it
pays to change over—is to subtract the
elapsed interval from the fixed and known
value of the comparison interval at the start
of the trial.

Staddon and Higa’s discussion of this ex-
periment focuses on the question of the sub-
jective value of the first half of a comparison
interval versus the second half, which is not
the proper focus. The most powerful result
from these time-left experiments (as was
stressed in the original publication by Gibbon
& Church, 1981) is the relation between the
midpoint of the cumulative changeover func-
tion (hereafter, the changeover point) and
the absolute values of the comparison and
standard intervals, when the ratio of these
two reference intervals (the C/Sratio) is held
constant. What matters is not where the
changeover point is located for any particular
values of C and S, which is what Staddon and
Higa focus on. What matters is what happens
to this changeover point as one increases the
values of C and S proportionately (leaving
their ratio unchanged). If subjective intervals
are proportional to the logarithms of objec-
tive intervals, then the midpoint of the
changeover distribution should be deter-
mined by the C/S ratio, which means that it
should be independent of the actual values
of C and S. This seems a priori exceedingly
unlikely, and it is, in fact, contrary to exper-
imental fact. Empirically, the changeover
point increases linearly with the values of C
and S. This result is fatal to the assumption
that the magnitudes being subtracted in the
head are the logarithms of the corresponding
objective intervals.

In the end, Staddon and Higa seem to rec-
ognize the impossibility of explaining the
time-left result while maintaining the assump-
tion that the computation of the time left is
carried out with quantities that are propor-
tional to the logarithms of the intervals they
represent. They write, “The claim is that no
matter what the animal’s internal code for
elapsed time, it will also have some kind of
compensatory perceptual constancy mecha-
nism . . . that allows it to behave appropriately
with respect to the real world (i.e., real
time)” (p. 222). In Footnote 2, they write,
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Time may well be (and is, we contend) encod-
ed nonlinearly, in the sense that it is mapped
on to some internal variable that increases
[sic] with elapsed time in a negatively accel-
erated way. Nevertheless, subjective time, like
subjective weight and the other examples, is
roughly proportional to real time. We argue
that encoding determines experimental re-
sults that depend on discriminability, but sub-
jective value determines results that depend
on value (e.g., choice experiments).

They seem here to be making a distinction
between how time is “really” encoded in the
nervous system and how it is encoded when
the animal has to do something that depends
on its time estimates. In the latter case, they
concede that “subjective time ... is roughly
proportional to real time.” It is in the nature
of behavioral data that they can only be used
to determine how a thing is represented at
the point in the brain at which the signal that
does the representing enters into a combi-
natorial computation that has behaviorally
observable consequences.? The time-left ex-
periment determines the relation between
the subjective interval and the objective in-
terval at the point in the behavior-generating
process at which the brain determines the
time left. At that point, the relation appears
to be one of proportionality. Elsewhere in the
brain where intervals are represented, the re-
lation might have a different form. If so (and
evidence of this remains to be found), then
it will be difficult to defend the claim that the
form at one point in the brain’s processing is
the “real” form, whereas the form elsewhere
is the “?” form (virtual? imaginary? com-
plex?—it is not clear what alternative to
“real” would be appropriate to plug in here).
The process that determines when the sub-
ject changes over from the standard option
to the comparison option is presumably a real

2 A computation in which the values of two different
variables combine to determine the result. For example,
in SET, the subjective measure of the currently elapsing
interval is divided by the expectation retrieved from
memory (a combinatorial operation) to produce the
measure of similarity, which is compared to a threshold
to determine whether the animal will or will not begin
to respond. The comparison is also a combinatorial op-
eration, namely, ordination (is the measure of similarity
greater than the threshold). All of the basic operations
of arithmetic (addition, subtraction, multiplication, divi-
sion, and ordination) are combinatorial operations. In-
version, taking the log, raising to a power, and exponen-
tiation are examples of noncombinatorial operations.
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process, so the variables that enter into it are
presumably themselves just as real (tangible,
measurable, etc.).

Explaining the Distributions of
Response Latencies

Thus, the question becomes whether there
is evidence that at some point in some of the
processes underlying at least some timing
tasks, the form of the relation between the
interval signal in the head and the objective
interval is approximately logarithmic or, al-
ternatively, a decay function. As indicated
above, these are mutually exclusive hypothe-
ses, because decay functions go to zero
whereas the negative logarithm goes to minus
infinity. The majority of the tasks to which
SET has been applied are tasks that look at
the distribution of response latencies relative
to the reinforcement latency. SET does a
good job of accounting for these distribu-
tions. By contrast, the observed distributions
are not predicted by a model that assumes
that (a) the relation between subjective inter-
vals and objective intervals is either approxi-
mately logarithmic or is determined by a de-
cay process and (b) the noise in a subjective
interval is Gaussian with constant standard
deviation. If the underlying measure of the
ever-lengthening objective interval is really
decaying to an asymptotic value of zero, as
any decay model ought to assume, then it is
going to be even more interesting to see what
kind of assumptions about underlying noise
will be required to explain the scalar vari-
ability that is so salient a property of the ob-
served distributions. The particular MTS
function that Staddon and Higa use in their
Figure 1 is effectively zero by the time that
1,000 s have elapsed. Beyond that interval,
there is nothing left to decay, so all objective
intervals longer than that are subjectively the
same. However, the likelihood of a pigeon’s
having resumed responding when a given
proportion of the fixed interval in a fixed-
interval schedule has elapsed is the same
when the fixed interval between rewards is 30
s as when it is 3,000 s (Dews, 1970). This is a
particularly striking and simple example of
scalar variability in the timing of an operant
response. How this could be explained by a
sum of exponentials (or any other true decay
function) and what the noise assumptions
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would have to be to get scalar variability over
that range of intervals are very unclear.
Staddon and Higa do not make any sug-
gestions about the sources or the form of the
noise in the processes that generate timed re-
sponses. As a consequence, they do not offer
an account of the distributions that are ob-
served experimentally. Rather, they seem to
argue that it is not reasonable to try to ex-
plain these distributions. If so, then there is
little reason to offer alternatives to SET, be-
cause that is what SET principally explains. In
refusing to try to explain the distributions of
timed responses, Staddon and Higa abandon
the field on which SET most often operates.
More important, they avoid wrestling with
some of the more difficult consequences of
the assumption that time is measured in the
head by a decay process. One of the more
intractable problems with this assumption is
reconciling it with the scalar variability ob-
served in the distribution of response times.
At several points, Staddon and Higa seem
to argue that SET is founded on the expla-
nation of experiments on temporal discrimi-
nation. This assumption seems to underlie
the paragraph (p. 223) whose second sen-
tence begins, “The fundamental flaw in the
time-left argument is in fact conceptual” and
culminating in the sentence, “The general
point is that discriminability does not deter-
mine perceived value.” This is a puzzling par-
agraph, because SET does not rest on the
Fechnerian error of assuming that just no-
ticeable differences are subjectively equal. In
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fact, it is well known that this assumption led
to Staddon and Higa’s sometime postulate
(that the relation between the subjective
quantity and the objective quantity is logarith-
mic), not to Gibbon’s postulate. Indeed, the
postulates that constitute SET are incompat-
ible with the assumption that just noticeable
differences are equal. Whatever SET’s faults,
the assumption that discriminability deter-
mines perceived value is not among them.
On the other hand, the failure to explain
the scalar variability in the distributions of
conditioned responses is a serious fault in
Staddon and Higa’s model. Scalar variability
is a very well-established fact. It appears to be
a manifestation of a deeper and broader prin-
ciple, the principle of time-scale invariance.
And, it appears to be irreconcilable with the
assumption that temporal intervals are mea-
sured by a decay process, which is the central
assumption in Staddon and Higa’s model.
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